高端学术
您当前的位置:核心期刊咨询网农业论文》从流域水环境与水利工程影响角度分析汉江水华成因

从流域水环境与水利工程影响角度分析汉江水华成因

来源:核心期刊咨询网时间:12

摘要:摘 要:水电梯级开发对河流产生的系列生态学效应是当前热点问题,通过梳理近年汉江水华应急监测成果,从水利工程运行与水华发展的关联角度,进一步深入剖析汉江水华发生的成因及影响要素,提出相关应急调度的防控措施和建议,为汉江水华综合防治提供技术支撑

  摘 要:水电梯级开发对河流产生的系列生态学效应是当前热点问题,通过梳理近年汉江水华应急监测成果,从水利工程运行与水华发展的关联角度,进一步深入剖析汉江水华发生的成因及影响要素,提出相关应急调度的防控措施和建议,为汉江水华综合防治提供技术支撑。

  关键词:汉江水华;营养盐;叶绿素;水生态群落

水利工程师论文

  汉江干流梯级开发在取得巨大社会经济效益的同时,对河流生态系统产生了一定的影响,其中汉江水华作为汉江流域的热点环境问题,呈现逐年频发的态势,严重威胁着区域生态安全。一般认为,汉江水华的产生与汉江充足的营养盐、春季流域适宜的气候、缓慢的水流有关,但也有学者指出,汉江水体营养盐含量丰富,并不能成为汉江水华暴发的诱发因子,水利工程影响下的流量、流速等水文因子才是制约汉江水华发生的关键要素。因此,探究影响汉江水华发生的关键因素,以及如何及时精准地防控水华暴发,是目前亟待解决的问题。

  1 实验与方法

  1.1 研究区域与样点布置

  2018年2月至3月,汉江中下游再次暴发大规模水华,其影响范围、发生历时均明显增加。为进一步分析汉江水华发生、发展和水利工程运行之间的内在联系,2018年7月至2019年3月,项目组在汉江中下游的19个重要控制断面开展了连续的现场观测,其中以丹江口水库和兴隆水库为重要研究对象,分析水利工程运行对汉江水华发生成因的影响,具体监测样点布置如图1所示。

  1.2 样品采集与分析测试

  按照《水环境监测规范》要求开展现场水质样品和底质样品的采集,同时利用便携式多参数水质分析仪(YSI-EXO,美国)现场开展部分参数的监测,具体包括水温、pH值、溶解氧、电导率、浊度及叶绿素等。实验室分析参数主要包括总氮、总磷、氨氮、硝氮、叶绿素a、脱镁叶綠素等。水生态样品监测主要包括浮游植物、浮游动物,具体监测分析方法参照相应监测标准执行,其中脱镁叶绿素a测定方法参考文献进行。底质指标主要为总氮、总磷、氨氮、硝氮等,具体测定方法参照《土壤农化分析》。

  2 结果与分析

  为进一步理清汉江水华发生的成因,掌握其与流域水利工程运行之间的响应关系,项目组在研究区重要控制断面进行了长时间的连续监测和调查,对汉江水华发生、发展与水利工程运行之间的内在联系有了更进一步的认识。

  2.1 营养盐分布特征

  如图2所示,通过19个监测断面2018年7月的监测数据分析显示,丹江口大坝坝前至汉江中下游干流总磷浓度在0.018~0.134 mg/L之间,其中水库库区总磷浓度整体较低,从汉江下游仙桃段开始总磷浓度有所升高。作为汉江的支流,小清河口、唐白河口及汉北河总磷浓度相对较高,分别达到了0.121mg/L、0.200 mg/L和0.125mg/L。长江干流的沌口、汉口总磷浓度约为汉江干流的5~8倍,由此可见,汉江干流总磷浓度总体较低,而其主要支流总磷含量相对较高,是外源输入的主要途径。

  相对于总磷含量较低的情况,汉江干流总氮含量显著偏高。在各监测断面中,总氮含量范围在1.115~2.349mg/L,其中在库区大坝前水体总氮含量达到了1.250mg/L,为湖库水质评价标准Ⅳ类水水平。汉江主要支流小清河口、唐白河口及汉北河的总氮浓度分别达到了1.478 mg/L、2.349 mg/L及1.215 mg/L。根据相关学者研究成果显示,当水体TN含量大于1.0mg/L时,对于硅藻而言TN已处于相对饱和状态,此时TP含量便成了影响硅藻繁殖的关键因子。

  因此,从过去的研究成果分析,由于TN含量本底过高,因此在建立TN与其他环境因子联系时往往容易误解为TN与藻类增值影响不大,由此忽略了水体中TN的关键贡献,特别是没有深入研究总氮中硝态氮和氨态氮对藻类增殖的影响。本次调查通过分析总氮含量结构可知,干流水体中总氮主要以硝态氮为主,大约占了总氮含量的70%~90%,而氨氮所占比例较小,不到5%。在主要支流中氨氮含量明显较高,其中小清河口氨氮占总氮含量27%左右,因此,汉江支流面临的农业污染及其他外源性营养输入较为严重。

  当前普遍认为,水体中合适的氮磷比是促使水华发生的关键因子。通过分析不同时期水体氮磷比发现,水华暴发期(2019年1月)皇庄以下断面氮磷比更接近13,随着水华的消退,各断面氮磷比逐渐升高,逐渐维持在一个稳定的水平。由此可见,当汉江水体氮磷比在13附近时,更易促使水华的发生。

  2.2 叶绿素时空分布特征

  图5列出了调查期2018年7月汉江中下游水体叶绿素分布情况,其中叶绿素a含量代表了水体中活体浮游藻类的群落数量,而脱镁叶绿素Pa代表了水体中已衰退的浮游藻类水平。通过图5各监测断面叶绿素a含量可知,汉江支流小清河口、唐白河口及汉北河依旧是藻类分布较密集的区域,叶绿素a的含量在17.75~23.45μg/L之间,可为下游水体输送大量藻源。

  从图4各监测断面氮磷比可知,叶绿素a含量相对较高地区其氮磷比也越接近13,属于适宜藻类生长环境,因此,当外部条件满足(如气温、光照等)时,该地区极易发生水华灾害。而在汉江中下游皇庄断面开始,叶绿素a含量不断增加,特别在兴隆库区的沙洋断面达到一个峰值,说明藻类在库区已有大量聚集,在兴隆坝下河段也呈一个高密度分布状态。由此可见,只要外部条件满足,该地区仍然有暴发大规模水华风险。通过分析脱镁叶绿素Pa的含量,皇庄至仙桃断面水体中Pa的含量较高,变化范围在4.74~9.71μg/L,这大约为汉江中游襄阳河段的10倍,刚好与2018年2月暴发的水华主要影响分布范围一致。

  推荐阅读:水利类核心期刊容易投稿成功吗

转载请注明来自:http://www.qikan2017.com/lunwen/nye/18221.html

相关论文阅读

论文发表技巧

期刊论文问答区

农业优质期刊

最新期刊更新

精品推荐